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ABSTRACT

A prototype gas turbine engine simulation has been developed that offers a generalized framework for the

simulation of engines subject to steady-state and transient operating conditions. The prototype is in preliminary

form, but it successfully demonstrates the viability of an object-oriented approach for generalized simulation

applications. Although object-oriented programming languages are---relative to FORTRANDsomewhat austere,

it is proposed that gas turbine simulations of an interdisciplinary nature will benefit siguifieantly in terms of

code reliability, maintainability, and manageability. This report elucidates specific gas turbine simulation

obstacles that an object-oriented framework can overcome and describes the opportunity for interdisciplinary

simulation that the approach offers.

INTRODUCTION

Gas turbine engine simulations began to appear in elementary form about four decades ago, coinciding

with the time that two-spool engines were introduced. At that time, and with fuel-flow control problems as a

backdrop, the increased engine technological complexity demanded a more complete understanding of dynamic

system behavior, and there was a need for analysis methods (mathematical models and their computer

implementation) leading to improved system control and performance (Fawke and Saravanamuttoo (1971)).

Simulation contributions to the understanding of dynamic systems are as important today as they were in the

1950's. It is important to note that, historically, advances in simulation technology have very closely followed

refinements in dynamic system modeling, the evolution of computer languages, and improvements in computer
hardware and operations. In the last two decades, major (real-time) simulation paradigm shifts have been

associated with the migration from analog to hybrid computers and then the complete shift to digital computing

platforms.

At present, dynamic aircraft engine system simulations are routinely applied in the study of engine

operability issues, engine control law development, and real-time simulation (aircraft system control); Khalid

(1992) discusses specific examples of current interest. Increasingly severe performance specifications (e.g.,

efficiency and thrust/weight) for existing engines will continue to increase the already prominent role of

dynamic engine system simulations in design studies of derivative engine concepts (French (1982) and Khalid

(1992)). "-

The state of the art of simulation is under pressure to move forward again. Competitive engine design

processes for new (complex) systems must reflect technical design requirements beyond the realm of perfor-

mance (Henderson and Blazowski (1989)). To predict (for example) reliability and stability is to add a new

dimension to existing simulation development techniques. Current simulations are derived largely along

discipline lines (aerodynamics, structures) in which isolated model development necessarily involves simplifying

assumptions. For highly coupled (discipline) problems, there is a high probability that computational complexi-

ties are aggravated (rather than resolved) or that the simulation reliability is jeopardized (Denning (1990)). An

interdisciplinary approach has been proposed as the necessary change in perspective. Furthermore, parallel and
distributed processing capabilities are developing very rapidly (see Hoist et al. (1992)), and there has been a

related emergence in computer languages; it is imperative that future simulation developers be cognizant of

these developments.



Weconjecture that traditional simulation strategies must be relinquished if a significant advance in

engine simulation is to be realized. We propose that an object-oriented simulation approach is a unique (and
natural) way of looking at aircraft engine simulation which has the potential to successfully provide a

meaningful, yet economical, framework for interdisciplinary system analysis. Such an approach is being

undertaken as part of the Numerical Propulsion System Simulation project (see Claus et al., (1991)). This paper

describes several aspects of this aircraft engine simulation that are being explored with the object-

oriented approach.

SIMULATION DEVELOPMENT PROCESS

Several aspects of the typical simulation development process are motivating factors to consider for an

object-oriented approach to a gas turbine engine simulation. In the discussion that follows, some obstacles

associated with a typical component-level model simulation are described first. Then, on the basis of that

discussion, three fundamental limitations to current simulation practice are presented. In the last section of this

paper, key features of the object-oriented programming framework are discussed that could mitigate the
simulation limitations (experiences from the prototype gas turbine simulation are included wherever possible).

Although the discussions in the present work reflect the authors' experience with aerothermodynamics and

controls applications, the arguments often extend to structural simulations.

Overview of the Simulation Development Process

Gas turbine engine simulations (a computer solution to a mathematical representation of the engine cycle)

are normally intended to mimic dynamic or steady-state engine behavior. Figure 1, which is based on the work

of Szuch et al. (1982), illustrates seven key steps in the simulation development process. The first step,
formulation of the mathematical model, involves the appropriate application and tailoring of conservation laws

(discipline specific).to the perceived system attributes (physics); the complete mathematical method development

includes equation solver strategies. After mathematical methods are established, data must be prepared that

reflects specific engine design detail and operating environment characteristics. The next step, implementation,

links the methods and data by creating a computer code based on a computer language (syntax). Implementation

expectations are highly coupled to the formulation strategy.

The fourth step in the process, simulation evaluation and validation, compares the computed results with

the design/performance data. Inevitably, a discrepancy between the calculated response and the data occurs; this

is usually attributable to either an error in the mathematical method or in the formula translation. Again, with

figure 1 in mind, a modification is usually necessary (to resolve the error); and the assessment of what is

required may take the analyst back to either the formulation or implementation stage. Once the simulation
results -have been validated, documentation of the simulation design (and related methods) then takes place.

Finally, if, for example, the effect of design changes are of interest, the simulation development process just

completed is repeated. Often the simulation framework is intended to be robust and applicable to a new engine
with minimal effort.

Some Component-Level Model Attributes

Gas turbine simulation design usually evolves from a convenient and natural decomposition of the engine

according to component functions (component level model); for example, an engine is represented as the

assembly of a compressor, burner, turbine, and interconnecting duets. This can be illustrated by the turbofan

engine schematic shown in figure 2, which has the component level model representation shown in figure 3.
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Mathematical component models are based on the application of conservation laws (discipline specific) to

a given component, say, the compressor. As a result, the aerothermodynamics or the structural mathematical

description of the component is obtained. Extensive examples of this approach for real-time (or realistic time)

simulation are presented in the references; a sample of simulations for gas turbine aerothermodynamic behavior

and control characteristics for a variety of computer platforms can be found in the work of Ballin (1988),
Daniele et al. (1983), Drummond and Ouzts (1989), Mihaloew and Hart (1978), Mihaloew et al. (1981),

Schuerman et al. (1977), Sugiyama (1979), and Sugiyama et al. (1989). Although this list is far from complete

(and underemphasizes structural simulations), a commonly recurring simulation theme (not aerothermodynamic

specific) is the need to develop a tractable mathematical cycle representation commensurate with the system

fidelity of interest and the capabilities of the hardware platform (this is true for both real- and non-real-time
simulations.

For brevity, specific remarks on algorithms, modeling techniques and assumptions for each component

are not presented here. For example, comments on generic nozzle behavior or compressor characteristics can be

found in Cohen et al. (1987) or Mallinson and Moyes (1960).

In the present work it is more relevant to summarize three simulation obstacles associated with complex

systems for which object-oriented programming can provide some relief. They are component performance

representations, intercomponent coupling, and interdisciplinary coupling. A fourth (recurring) simulation issue,
initialization and balancing, is important, but programming experience has not confirmed any object-oriented
benefit.

Although the current work has an implied interest in aircraft gas turbine engine analysis, many of the

remarks are directly applicable to stationary power plants--for which forward motion and altitude are not central
concerns, Cohen et al. (1987). Techniques for stationary power plant analysis can clearly benefit aircraft engine

analysis (see, for example, Sehoberi (1986)), and the reverse is also true.

Three Obstacles to Complex System Simulation

Component performance representations.--A major task in turbofan engine modeling is predicting the

aerothermal performance of the major components of the engine. An acceptable compromise to the description

of turbofan component performance is a representation based on nondimensional analysis. This approach yields

multivariate component "maps" that detail base component performance over a wide range of operating
conditions.

The nondimensional performance map is a relatively straightforward and intuitively pleasing approach to

turbofan component performance modeling. However, as a practical modeling technique, the approach has some

significant drawbacks. Traditional component maps are difficult to use for new data and/or for component sizing

studies. Furthermore, modeling of component off-design performance can require additional maps that eorrsume

large amounts of computer memory. A key feature of hybrid simulation was the storage of component maps on

the digital computer and the communication with and solution of the differential equations on the hybrid

computer (in addition, of course, to the real-time capabilities of the hybrid computer).

The drawbacks in the traditional turbofan component performance maps led to the development of

alternative methods of modeling component performance. Converse and Griffin (1984) present a "backbone"

performance-fitting technique that is based on the physics of the component rather than on the curvefits of

nondimensional parameters. The beauty of the approach is compromised by its complexity (of course, this

diminishes considerably as the user becomes familiar with the technique).



Performancemaps and backbone representations are appropriate techniques for the scope of many current

and future simulation efforts. However, they represent static descriptions of component performance and would

create difficulties in developing, for instance, a high-fidelity dynamic system simulation study of rotating stall.

Because this specific example is an active area of research, work-arounds (in the form of modeling) are

beginning to emerge. Nevertheless, the traditional focus on aer.othermodynamic (or any isolated discipline)

performance precludes interdisciplinary system simulation. The role of component representations of a more

fundamental nature (based on theories of fluid mechanics or elasticity) is becoming apparent.

Currently, an approach to component representation based on In'st principles is (in principle) feasible, but

cannot be (in practice) accomplished on a typical (single processor) simulation computing environment. As

mentioned before, preexisting implementation expectations hinder the formulation of the problem unless

implementation capabilities change.

Intereomponent eoupling.mA corollary to the task of predicting individual component performance is the

matching of component operating conditions such that basic conservation laws are obeyed along the gas

flowpath. One approach to this problem is to explicitly invoke conservation laws in the form of differential

equations relating the flowpath conditions between major components. With figure 3 in mind, the usual

approach is to place intereomponent volume dynamic elements between component performance modules.

Although the inclusion of explicit intereomponent volume dynamics equations would result in a higher

frequency (50- to 100-I-lz) gas generator model (see Seldner et al. (1972), or Schuerman et al. (1977)), such a

model is not always required by the simulation task. Furthermore, a high-frequency model may result in

dynamic (numerical) instabilities that require an additional computational burden (i.e., smaller time steps) or

appropriate dynamic damping to resolve. The iterative solution algorithm capabilities associated with digital
machines resulted in the omission of volume dynamics for simulations providing 10-Hz fidelity; the overwhelm-

ing "need for speed" in many simulation systems has had a direct affect on solution algorithms. Although such
an approach fits the intent of the original simulation, two significant hazards are that the system fidelity is not

easily generalized, and modifications of the original configuration are very difficult to implement. Clearly,

assumptions about intereomponent coupling lead to limitations on code reusability and a rigid adherence to

procedural code development.

Interdisciplinary coupling.taMest physical processes involve some coupling between scientific dis-

eiplines, but in simulation the issue is the extent of the coupling and to what degree the coupling influences

dynamic system behavior. This is not to trivialize the issue of interdisciplinary coupling because, for instance,

flutter (aerodynamics coupled with structural dynamics) has been a challenge of long-standing interest and of

technical relevance to flight safety (Carta (1989)). More commonly occurring are the interdisciplinary

simulations of control systems and aerothermodynamie cycle representations for the development of integrated

flight/propulsion control systems (Akhter et al. (1989)). These kinds of systems benefit from the ability to match

time scales between the disciplines very closely. Aeroelastieity problems span a larger continuum of time and

length scales than aerothermodynamic problems do. --

Sobieszczanski-Sobieski and Chopra (1990) remark that (albeit related to multidisciplinary optimization)

"major new aircraft design projects have become fewer and farther apart in time, hence past experience becomes

less useful as a guide in making design decisions." New systems will require enabling technology development.

Furthermore, these authors suggest that "advanced aircraft ... performance hinges on a myriad of numerical

interplays, some of them very subtle and beyond the power of human judgment to evaluate precisely." Denning

(1990) makes similar comments in his more general discussion of modeling reality. Interdisciplinary simulations

demand a quantum change in simulation perspective.

Consider an engine simulation intended to incorporate compressor blade flutter. Figure 4, taken from

Carta (1989), presents the interdisciplinary nature of the problem very clearly. Aeroelasticity transforms what

4



wasonce an initial-value problem into what is now a combined initial-boundary-value problem. Some

fundamental implementation issues are (1) the "raw" number crunching capability required to solve unsteady

aerodynamics and structures problems simultaneously, (2) mismatched fidelity of the simulation modules, (3) the

development of effective means to introduce geometric data into the simulation, and (4) software manageability.

Summary of Simulation Obstacles and Limitations

Numerous obstacles and limitations to existing simulation approaches have been provided in the previous

narrative, but the following summary will clearly show the potential of an object-oriented framework to resolve

these problems:

(1) Procedural code structures predominate existing (large-scale) simulation codes, and the ensuing

approaches are constrained to be either general, simple, or accurate. However, a simulation that is any
combination of these is not currently available (in the public domain). Work-arounds to simulation constraints

usually involve some compromise whereby, for example, diminished model fidelity is exchanged for increased

simulation execution speed, or where simulation generality (flexibility) reduces program simplicity.

(2) Discipline isolation is relatively predominant for the "usual" simulation. Interactions between

disciplines such as aerodynamics, structures, and controls are actually fairly limited during mathematical

modeling of component characteristics. In addition, the simulation must deal with a continuum of time and

length scales and must introduce component geometric characteristics in a manageable fashion.

(3) Simulation languages and architectures tend to assume a single-processor hardware environment that

impedes software portability to modern parallel and distributed computing environments. This assumption leads
to a "strategic fit" philosophy in which simulation methods are not designed to exceed perceived implementation
limitations.

In conjunction with these realities, traditional (digital) simulation developers fred k impossible to resist

customizing code and tailoring solution techniques to the specific problem and performance window at hand.

This tendency has far-reaching effects on manageability, affecting the documentation, reliability, maintainability,
and reusability of the subsequent code. Application-driven efforts require flexibility in the multifidelity
simulation.

OBJECT-ORIENTED APPROACH

We propose that the object-oriented approach to simulation has the potential to overcome many of the

simulation obstacles just discussed. In the present work, there has been an intentional emphasis on leading-up to

and describing the simulation obstacles in order to make the value of an object-oriented framework easier

state. In the present section we provide a somewhat terse description of what an object-based view is; the
discussion makes use of and benefits considerably from the report by Holt and Phillips (1991). To be sure, there

are numerous other papers and books dealing with the subject of object-oriented programming (for example,

Shaw (1992), Smith (1991), Steele (1984), Beech (1986), and Flamig (1991)), but the work of Holt and Phillips

(1991) deals explicitly with an object-based implementation of the Digital Computer Program for Generating

Dynamic Turbofan Engine Models (DIGTEM, Daniele et al. (1983)) gas turbine engine code.

A discussion of an object-based framework frequently leads to two questions:

(1) How is the object-based approach different from a subroutine-based FORTRAN program?
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(2)Why do we need another programming language?

To answer these questions it might be more appropriate to change the questions and ask (Schoeffler

(1992))

(1) Have you ever heard of a library of subroutines that was credited with helping to solve a software

problem?

(2) What needs to be changed in current simulation practice?

The literature suggests that, although in principle the answer to the first question might be "yes," in

practice the answer (for large-scale simulations) is "no." It is beyond the scope of this paper to argue further. A

more appropriate focus is on the second question; from a programming perspective the response is (again,

Schoeffler (1992))

(1) Structure, structure, and more structure

(2) Modules that can be used like building blocks

(3) Modules that are application oriented

(4) Modules that can be reused

(5) Modules whose source code need not be changed for them to be reused

Reusability is a central issue (Meyer (1987)). Many conveniences associated with the "usability" of

FORTRAN hinder, in the context just described, its "reusability." Furthermore, a computer language that had

the attributes in this. list would be the desired language for simulation--object-oriented languages appear to fit

the requirements; specific features supporting this notion follow.

Fundamental Object Representation--Classes and Inheritance

What is an object? Objects are defined in terms of classes. A class is a group of objects that have the

same attributes (such as length, area, and inlet pressure) and methods (such as equations for state variable time

derivatives). The individual values of the attributes of a particular class are set by creating an instance of the

class. For example, figure 3 illustrates that there are several intercomponent ducts in the engine. The unique

values of the duct's attributes are what distinguishes one duct from another. They are all members of the class

of ducts and thus share the same analytic model.

Different classes of objects can also share common methods and attributes through a mechanism called

inheritance. For example, a variable compressor inherits most of its definition from the class of compressors. In

turn, compressors are a kind of rotating part and thus inherit behavior from the class of rotating components.
The goal of this approach is to eliminate redundant code development and maximize the generality of the
model.

With this general approach in mind, it is necessary to look for a generic starting point to define the

system. In the prototype engine, the cycle, the most general object is a fixed control volume. From the control

volume, components and mixing volumes are established. Components are associated with real physical entities
(such as the compressor or turbine) that transform energy from one form to another. Unlike mixing volumes, no

energy can accumulate within the control volume. An illustration of the generic mixing volume and the



componentcontrolvolume are given in figure 5. A more detailed description of the genetic mixing volume

concept is given in Holt and Phillips (1991).

Connector Groups

Although the components and mixing volumes are the fundamental building blocks of the simulation

system, connector groups are the means by which components and mixing volumes communicate with one
another. Connectors are represented as objects in the system. In the prototype simulation, key connector groups

defined are parameter groups, zoom processors, and feedback connectors. Parameter connectors are a means to

communicate individual parameters of a particular discipline between components and mixing volumes. A zoom

processor connects component models with differing fidelities. Feedback connector groups permit the creation of

closed-loop systems.

Parameter connectors allow for convenient interdisciplinary system def'mitions. Zoom processors assist in

creating system simulations that accommodate a variety of length and time scales (recall the mismatched fidelity

issue discussed earlier).

Gas Turbine Hierarchy

Consider an object-based view of the gas turbine model shown previously in figure 2. Each component

of the system (e.g., the fan, compressor, and combustor), as well as the generic mixing volumes, can be
represented as an object. Each object has characteristics (like state variables) and functions (equations for state

variable time derivatives) that are combined to create a complete definition of the object. In general, when

surveying a gas turbine, anything that is worth talking about is probably an object (object-oriented modeling is a
way of modeling reality).

The result of connecting the components and mixing volumes together with connector groups is a system.

However, it is necessary to bring these objects together under an umbrella system object. The system defined by

connecting components and mixing volumes together is strictly a static description of the system. It is necessary

to define the system object (which contains the components, mixing volumes, and connector-groups) in order to

provide the actual simulation methods (steady-state or transient).

A class hierarchy, shown in figure 6, was created to provide a general framework for simulation model

development. The framework can accommodate simulation models with varying levels of fidelity and for many

disciplines of analysis.

Prototype Simulation

A nonproprietary engine model, DIGTEM (Daniele et al. (1983)), was selected for decomposition and

implementation in the Common Lisp Object System. A graphical user interface was developed to simplify the

creation and execution of the system.

An extensive validation effort went into the original DIGTEM model, so the relative success of the

object-based implementation is manifest in the lack of difference between the predicted original and Lisp

state-variable profiles. The icon-based, graphical user interface simplifies system model development, and the

user need not modify any source code to create simulations of new configurations (really).



CONCLUDINGREMARKS

TheLisp object-orientedapproachto thedynamicenginerepresents a major paradigm shift for gas

turbine system simulation; specific benefits are

I. Object-oriented code modularity is amenable to distributed- or parallel-processing hardware platforms.

2. Methods and data are more closely related, and a rational hierarchy exists for the gas turbine system.

3. Strict (and enforceable) code syntax improves code maintainability and reusability.

We propose that this approach to code development, when executed on parallel or distributed processing

environments (with the appropriate operating systems), now provides a realistic basis on which to explore

simulations with subsystem component modules of differing fidelity (i.e., different length and

time scales). This process of "zooming" (entertaining various levels of fidelity with a given calculation

sequence) holds great promise for those dynamic simulations where, for example, performance at "out-of-

range" design conditions are unknown or where a new compressor model behavior is of interest in situ.

Although the prototype mentioned in this work is, in fact, a prototype, it nonetheless has been instrumen-

tal in successfully demonstrating the salient features of an object-oriented perspective.
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